Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Modern machine learning has achieved impressive prediction performance, but often sacrifices interpretability, a critical consideration in high-stakes domains such as medicine. In such settings, practitioners often use highly interpretable decision tree models, but these suffer from inductive bias against additive structure. To overcome this bias, we propose Fast Interpretable Greedy-Tree Sums (FIGS), which generalizes the Classification and Regression Trees (CART) algorithm to simultaneously grow a flexible number of trees in summation. By combining logical rules with addition, FIGS adapts to additive structure while remaining highly interpretable. Experiments on real-world datasets show FIGS achieves state-of-the-art prediction performance. To demonstrate the usefulness of FIGS in high-stakes domains, we adapt FIGS to learn clinical decision instruments (CDIs), which are tools for guiding decision-making. Specifically, we introduce a variant of FIGS known as Group Probability-Weighted Tree Sums (G-FIGS) that accounts for heterogeneity in medical data. G-FIGS derives CDIs that reflect domain knowledge and enjoy improved specificity (by up to 20% over CART) without sacrificing sensitivity or interpretability. Theoretically, we prove that FIGS learns components of additive models, a property we refer to as disentanglement. Further, we show (under oracle conditions) that tree-sum models leverage disentanglement to generalize more efficiently than single tree models when fitted to additive regression functions. Finally, to avoid overfitting with an unconstrained number of splits, we develop Bagging-FIGS, an ensemble version of FIGS that borrows the variance reduction techniques of random forests. Bagging-FIGS performs competitively with random forests and XGBoost on real-world datasets.more » « lessFree, publicly-accessible full text available February 18, 2026
-
Modern machine learning has achieved impressive prediction performance, but often sacrifices interpretability, a critical consideration in high-stakes domains such as medicine. In such settings, practitioners often use highly interpretable decision tree models, but these suffer from inductive bias against additive structure. To overcome this bias, we propose Fast Interpretable Greedy-Tree Sums (FIGS), which generalizes the CART algorithm to simultaneously grow a flexible number of trees in summation. By combining logical rules with addition, FIGS is able to adapt to additive structure while remaining highly interpretable. Extensive experiments on real-world datasets show that FIGS achieves state-of-the-art prediction performance. To demonstrate the usefulness of FIGS in high-stakes domains, we adapt FIGS to learn clinical decision instruments (CDIs), which are tools for guiding clinical decision-making. Specifically, we introduce a variant of FIGS known as G-FIGS that accounts for the heterogeneity in medical data. G-FIGS derives CDIs that reflect domain knowledge and enjoy improved specificity (by up to 20% over CART) without sacrificing sensitivity or interpretability. To provide further insight into FIGS, we prove that FIGS learns components of additive models, a property we refer to as disentanglement. Further, we show (under oracle conditions) that unconstrained tree-sum models leverage disentanglement to generalize more efficiently than single decision tree models when fitted to additive regression functions. Finally, to avoid overfitting with an unconstrained number of splits, we develop Bagging-FIGS, an ensemble version of FIGS that borrows the variance reduction techniques of random forests. Bagging-FIGS enjoys competitive performance with random forests and XGBoost on real-world datasets.more » « less
-
Machine learning in high-stakes domains, such as healthcare, faces two critical challenges: (1) generalizing to diverse data distributions given limited training data while (2) maintaining interpretability. To address these challenges, we propose an instance-weighted tree-sum method that effectively pools data across diverse groups to output a concise, rule-based model. Given distinct groups of instances in a dataset (e.g., medical patients grouped by age or treatment site), our method first estimates group membership probabilities for each instance. Then, it uses these estimates as instance weights in FIGS (Tan et al., 2022), to grow a set of decision trees whose values sum to the final prediction. We call this new method Group Probability-Weighted Tree Sums (G-FIGS). G-FIGS achieves state-of-theart prediction performance on important clinical datasets; e.g., holding the level of sensitivity fixed at 92%, G-FIGS increases specificity for identifying cervical spine injury (CSI) by up to 10% over CART and up to 3% over FIGS alone, with larger gains at higher sensitivity levels. By keeping the total number of rules below 16 in FIGS, the final models remain interpretable, and we find that their rules match medical domain expertise. All code, data, and models are released on Github.more » « less
-
Li-Jessen, Nicole Yee-Key (Ed.)Objective The Pediatric Emergency Care Applied Research Network (PECARN) has developed a clinical-decision instrument (CDI) to identify children at very low risk of intra-abdominal injury. However, the CDI has not been externally validated. We sought to vet the PECARN CDI with the Predictability Computability Stability (PCS) data science framework, potentially increasing its chance of a successful external validation. Materials & methods We performed a secondary analysis of two prospectively collected datasets: PECARN (12,044 children from 20 emergency departments) and an independent external validation dataset from the Pediatric Surgical Research Collaborative (PedSRC; 2,188 children from 14 emergency departments). We used PCS to reanalyze the original PECARN CDI along with new interpretable PCS CDIs developed using the PECARN dataset. External validation was then measured on the PedSRC dataset. Results Three predictor variables (abdominal wall trauma, Glasgow Coma Scale Score <14, and abdominal tenderness) were found to be stable. A CDI using only these three variables would achieve lower sensitivity than the original PECARN CDI with seven variables on internal PECARN validation but achieve the same performance on external PedSRC validation (sensitivity 96.8% and specificity 44%). Using only these variables, we developed a PCS CDI which had a lower sensitivity than the original PECARN CDI on internal PECARN validation but performed the same on external PedSRC validation (sensitivity 96.8% and specificity 44%). Conclusion The PCS data science framework vetted the PECARN CDI and its constituent predictor variables prior to external validation. We found that the 3 stable predictor variables represented all of the PECARN CDI’s predictive performance on independent external validation. The PCS framework offers a less resource-intensive method than prospective validation to vet CDIs before external validation. We also found that the PECARN CDI will generalize well to new populations and should be prospectively externally validated. The PCS framework offers a potential strategy to increase the chance of a successful (costly) prospective validation.more » « less
An official website of the United States government

Full Text Available